Fuzzy Image Segmentation using Suppressed Fuzzy C- Means Clustering (SFCM)
نویسندگان
چکیده
Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixel location, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having SSV satisfactorily. To improve the effectiveness of FSOS in segmenting objects with SSV, this paper introduces a new fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm, which directly considers object SSV and incorporates the use of suppressed-FCM (SFCM) using pixel location. The algorithm also perceptually selects the threshold within the range of human visual perception. Both qualitative and quantitative results confirm the improved segmentation performance of FSSC compared with other algorithms including FSOS, FCM, possibilistic c-means (PCM) and SFCM for many different images.
منابع مشابه
Fuzzy Image Segmentation using Suppressed Fuzzy C- Means Clustering
Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixel location, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having ...
متن کاملAutomatic Feature Set Selection for Merging Image Segmentation Results Using Fuzzy Clustering
The image segmentation performance of clustering algorithms is highly dependent on the features used and the type of objects contained in the image, which limits the generalization ability of such algorithms. As a consequence, a fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm was proposed that merged the initially segmented regions produced by a fuzzy cluster...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملFuzzy image segmentation considering surface characteristics and feature set selection strategy
The image segmentation performance of any clustering algorithm is sensitive to the features used and the types of object in an image, both of which compromise the overall generality of the algorithm. This paper proposes a novel fuzzy image segmentation considering surface characteristics and feature set selection strategy (FISFS) algorithm which addresses these issues. Features that are exploit...
متن کامل